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To the Editor: 
Over the last 10 years, great interest has developed in 

monitoring drug and metabolite concentrations in bio- 
logical fluids to aid in optimizing individual patient drug 
therapy (1-6). Of course, such drug concentrations are only 
an indirect index of the ideal monitoring parameter, i .e . ,  
pharmacological response. The theoretical bases for 
quantifying pharmacological response for reversible 
pharmacodynamic processes were examined thoroughly 
(7-10). These mathematical relationships were used to 
elucidate the kinetics of the pharmacological effect of 
tubocurarine (11-14), succinylcholine (15-17), lysergide 
(18-20), mercaptomerin (21), ethanol (22), warfarin (23, 
24), theophylline (25), and cocaine (26). Each of these 
drugs elicits a pharmacological effect that can be accu- 
rately and reproducibly quantified. This report describes 
a method for elucidating pharmacokinetic properties fol- 
lowing constant-rate intravenous infusion of drugs eliciting 
quantifiable, reversible pharmacological responses that 
are immediate, not delayed, effects. 

The linear portion of the classic log concentration-re- 
sponse relationship can be described by (7): 

E = m log C + e (Eq. 1) 

where C is the concentration, E is the response, m is the 
slope of the linear portion of E uersus log C ,  and e is the 
unit concentration intercept of E versus log C .  With the 
assumption of instantaneous drug distribution and first- 
order drug elimination, plasma drug concentration during 
constant-rate intravenous infusion can be described by the 
following function of time: 

ko 
c1 (Eq. 2) 

where ko is the zero-order infusion rate, Cl is the total body 
clearance, K is the first-order elimination rate constant, 
and t is time. 

Substitution of Eq. 2 into Eq. 1 provides the relationship 
describing the pharmacological effect as a function of time 
during ongoing intravenous infusion: 

C = - (1 - e-Kt) 

(Eq. 3a) ko 
c1 E = m log- (1 - e - K t )  + e 

or: 

E = m log ko - m log C1 + m log (1 - e W K t )  + e (Q. 36) 

As infusion continues toward steady state, the term e-Kt 
approaches zero. Therefore, at steady state, Eq. 3b be- 
comes: 

E,, = m logko - m  logC1+ e (Eq. 4a) 

where E,, is the pharmacological effect a t  steady state. 
This relationship is most useful following conversion to the 
form: 

E,, = m log ko - b (Es. 4b)  

where b = m log C1 - e; b is the y intercept of E,, uersus 

For a drug satisfying the prior assumptions, Eq. 46 in- 
dicates that a plot of the steady-state pharmacological 
effect versus the logarithm of the intravenous zero-order 
infusion rate is linear with a slope equal to m, the slope of 
the linear portion of the log concentration-response rela- 
tionship. 

Consider the time course of declining pharmacological 
effect. Rearrangement of Eq. 1 yields: 

log ko.  

E - e  
m log c = - (Eq. 5 )  

Postinfusion, monoexponential decline of the plasma drug 
concentration from the steady-state concentration (C,,) 
achieved uia constant-rate intravenous infusion is de- 
scribed by: 

K t  
2.303 

log c = log c,, - - (Eq. 6) 

Substituting for log C and log C,, in Eq. 6 from Eq. 5 
yields: 

E - e  E x , - e  Kt -=--- 
m m 2.303 

or: 
mK 

2.303 
E = E,, - -1 

(Eq. 7 a )  

(Eq. 7 b )  

Equation 7b indicates that a plot of postinfusion phar- 
macological effect uersus time declines linearly from 
steady state, with the slope providing an estimate of the 
product of K and m. Construction of plots of E,, uersus log 
ko (Eq. 4b) and E uersus time, for effect declining from 
steady state (Eq. 7b), provides estimates of m and mK, 
respectively, and thereby enables estimation of K .  But 
knowing K ,  the biological half-life (t112) is readily calcu- 
lated from: 

(Eq. 8) 
In 2 

tl l2 = - K 
In addition to the assumptions stated in the original 

papers on this type of pharmacological effect model, in- 
ference of the pharmacokinetic behavior of a drug based 
on pharmacological effect data requires that no metabo- 
lites have measurable interfering pharmacological activity 
(27). If the decline of pharmacological effect is rate limited 
by the drug diffusion rate from the site of action, the re- 
formation rate of an essential enzyme, or homeostatic 
control mechanisms, the apparent elimination rate con- 
stant calculated from the equations discussed in this paper 
will be representative of the rate-limiting process (11, 
28). 

This method was applied to data obtained from a pre- 
vious study (29). In that study, 54 patients in a state of 
hypertensive emergency received sodium nitroprusside 
infusions in a dose-titration manner to achieve the desired 
hypotensive effect. Individual data were presented for four 
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Figure 1-Relationship between steady-state mean arterial blood 
pressure and sodium nitroprusside infusion rate in one patient with 
malignant hypertension. The linear regression line is shown (r = 
-0.99). 

representative patients. Data on one patient, a 45-year-old 
male with malignant hypertension, renal failure, and 
congestive heart failure, were presented in sufficient detail 
to permit the proposed analysis. In accordance with Eq. 
4b, a linear relationship was obtained between steady-state 
mean arterial blood pressure and the logarithm of sodium 
nitroprusside infusion rate over a 40-fold range of zero- 
order infusion rates (Fig. 1). As shown in Fig. 2, plotting 
the time course of the hypotensive effect declining from 
steady state following discontinuation of sodium nitro- 
prusside infusion illustrates adherence to Eq. 7b. 

Calculation of the slopes in Figs. 1 and 2 provides direct 
estimates of rn and mK of -30.1 mm Hg and 1.40 mm 
Hg/min, respectively. Therefore, K can be estimated as 
0.0465 min-l with a corresponding biological half-life of 
14.9 min. This estimate of biological half-life is consistent 
with the rapidly achieved steady-state hypotensive re- 
sponse observed clinically. This relatively short half-life 
supports the prior interpretation of the mean arterial blood 
pressures in Fig. 1 as being reasonable approximations of 
steady-state values. 

This analysis for sodium nitroprusside is exemplary of 
the potential utility of studying the pharmacokinetic 
properties of intravenously administered drugs eliciting 
a quantifiable response. Constant-rate intravenous infu- 
sion of a drug having a relatively short biological half-life 
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Figure 2-Time course of increasing mean arterial blood pressure 
fallowing discontinuation of sodium nitroprusside infusion. The linear 
regression line is shown (r = 0.99). 

will enable rapid achievement of steady state at each of the 
several infusion rates. Although this technique may not be 
applicable to all drugs, it may provide a basis for practical, 
exploratory analysis of pharmacological effect data for 
drugs such as nitroprusside, diazoxide, nitroglycerin, and 
trimethaphan. 
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To the Editor: 

Caffeine (1,3,7-trimethylxanthine), a compound in 
coffee, tea, and many other beverages, has been used suc- 
cessfully for the treatment of apnea in premature infants 
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